miércoles, 25 de septiembre de 2013

Colección cientifica de Time-Liffe Matemáticas2 El modélico pensamiento de los antiguos griegos (parte 1)

Formas puras de los sólidos.Los griegos fueron los primeros en dedicarse a las matemáticas como arte propiamente dicho. Su invención de las formas puras y abstractas constituye la base de la geometría de Euclides. Al costado hay algunas de estas formas, cuyos nombres derivados del griego utilizamos aún: pirámide, cono, prisma, hexaedro, cilindro y cubo.

Las matemáticas puras, las matemáticas por las matemáticas, sin tener como meta ninguna finalidad práctica- empezaron cuando el hombre pensó por primera vez en los números como tales números, y cuando pensó en las formas como tales formas, prescindiendo de sus características. Pero estas matemáticas puras iniciales no eran de un tipo lógico y sistemático como las que conocemos en la actualidad. Los olvidados genios de Mesopotamia que inventaron el sistema de base 60 apenas se detuvieron a ponderar las conexiones entre sus descubrimientos o a investigar profundamente los procesos de pensamiento por los que llegaron a aquéllos. Las tablas cuneiformes y los rollos de papiros en los que ellos y otros pueblos antiguos anotaban sus resultados matemáticos están tan desprovistos de razonamiento como las recetas de los libros de cocina. Sume esto o reste aquello, dicen, y encontrará la verdad. Un famoso texto egipcio, el Rind Papyrus, se describe a sí mismo como «direcciones para saber todas las cosas dudosas», y son reglas dadas en forma arbitraria.
Cuando los primitivos griegos se trasladaron al sur de la Península Balcánica para invadir, estudiar y finalmente subyugar las civilizaciones del Oriente Medio, pasaron a heredar el saber matemático que se había estado acumulando durante siglos. Los fascinó y los amedrentó, pero también los dejó insatisfechos. ¿Por qué eran ciertas las «direcciones dudosas»? ¿Qué significaban? Con su escepticismo y razón, los griegos, por primera vez, formularon conscientemente los dos procesos mentales vitales para el progreso matemático: la abstracción y la demostración.
La abstracción es el arte de percibir una o varias cualidades comunes en cosas distintas y formar una idea general partiendo de ellas. Abstraemos, por ejemplo, cuando se nos aparecen como edificios las iglesias, los ranchos y los rascacielos; cuando se nos aparecen como círculos las ruedas de carro, los neumáticos de automóvil y los «hula hoops».
La demostración es el arte de argumentar desde las premisas hasta la conclusión de forma tal que no se pueda encontrar ningún error en ninguna etapa del argumento. Los griegos distinguieron entre dos clases de premisas: las premisas generales, que denominaron axiomas, y las premisas específicas de las matemáticas, a las que denominaron postulados. Pero a fin de poder disponer de premisas para empezar, invocaron otro proceso mental denominado inducción. Mientras la abstracción revela un denominador común en las cosas diferentes -por, ejemplo, los gatos y los perros son animales-, la inducción lo revela en la misma clase de cosas. A partir de nuestra observación de los perros, hacemos la inducción de que todos los perros ladran; o de nuestra observación de la raza Doberman pinscher, inducimos que todos los Doberman pinscher son perros. Utilizando la información de estas dos premisas, podemos, mediante un proceso de razonamiento conocido con el nombre de deducción, probar que todos los Doberman pinscher ladran. Esta conclusión ineludible, o teorema, también puede tener un corolario, una proposición que necesariamente se desprende de ella. Un corolario en este caso sería: El Doberman pinscher de mi vecino ladra. Los griegos idearon todavía otra técnica para obtener una demostración, el método que llamamos en terminología latina reductio ad absurdum (reducción al absurdo). A través de este probamos la validez de una premisa al suponer deliberadamente que lo opuesto és cierto y demostrar después que esta premisa opuesta no tiene validez. Supóngase que al señor Smith le dicen que su perro ladra constantemente. Empieza con dos premisas: que todos los perros son animales y que los perros que ladran constantemente no pueden comer ni dormir. De este último grupo de premisas deduce que algún perro no come ni duerme. Esta conclusión, no obstante, es absurda puesto que contradice la anterior que todos los perros deben comer y dormir. Smith entonces examina de nuevo las cuatro premisas. La única de la que puede dudarse es la de que algún perro ladra constantemente. Puesto que le condujo a una conclusión absurda, debe ser falsa, y la opuesta de ésta -que ningún perro ladra constantemente- debe ser cierta.
Como puede verse a partir del viaje mental de Smith, los principios de la demostración griega no son realmente más que una formalización de los procesos de pensamiento que utilizamos cuando tratamos de presentar un argumento en forma ordenada. La forma de razonar de Smith es, naturalmente, mucho menos rigurosa y menos exhaustiva de lo que sería cualquier razonamiento matemático. Pero el matemático, a pesar de que utiliza conceptos no tan palpables como un perro que ladra, sigue utilizando las mismas reglas básicas de la abstracción y la deducción. Abstrae, por ejemplo, cuando reconoce que los números 6, 52 y 200 son divisibles por dos. Utiliza lareductio ad absurdum al examinar la premisa, por ejemplo, de que una fracción desconocida -denominada fracción reducida a su mínima expresión. Si prueba algebraicamente que cada una de las incógnitas, numerador y denominador, es un número par, prueba que su premisa es «absurda», ya que una fracción con dos números pares no está reducida a su mínima expresión.

2. Una pirámide de demostraciones
Con anterioridad a los griegos, los matemáticos no esperaban que nadie se interesara en las batallas mentales que habían tenido que librar para alcanzar un resultado: una fórmula, por ejemplo, de la cantidad de piedra que se requiere para construir una pirámide. Los griegos no se contentaron simplemente con comprobar que un resultado era operante. Querían explicar el por qué de un modo lógico y corto.
El escribir la demostración se convirtió en un arte en el que resultaba una cuestión de orgullo ahorrar al máximo las etapas del razonamiento y, aun así, no omitir nada. Los matemáticos griegos acumularon un repertorio de teoremas demostrados, cada uno de los cuales podía utilizarse sin volverlo a demostrar para formular algún teorema más adelantado. Además, todos los teoremas podían colocarse, hilera sobre hilera, en una pirámide invertida de conocimiento en constante expansión. El punto de apoyo de la pirámide podía hacerse coincidir con la experiencia cotidiana a través de unos axiomas evidentes por sí mismos: la distancia más corta entre dos puntos es la línea recta o dos líneas rectas sólo pueden cortarse una vez.

A medida que las matemáticas progresaron, el así denominado nivel de rigor continuó aumentando, como el nivel de agua. Debido a ello, los matemáticos modernos han encontrado supuestos ocultos en alguna de las demostraciones griegas. Incluso han señalado algunas limitaciones en el propio método axiomático. Han tenido que idear otros grupos de axiomas sobre los cuales construir las nuevas ramas de las matemáticas. Pero el sistema fundamental griego de la abstracción y de la demostración permanece intacto. Toda rama de las matemáticas modernas, en todo lo posible, está organizada según este sistema.

3. La luna y la cabeza de un alfiler
El trampolín de la revolución trascendental de los griegos en el pensamiento fue la geometría. Con su propensión artística natural, fueron atraídos instintivamente por la pulcritud y el atractivo visual de esta matemática de los puntos, las líneas, las áreas y los volúmenes. Tanto los babilonios como los egipcios habían utilizado una geometría rudimentaria, ideada para el deslinde de terrenos y la medición de los edificios, simplemente como operaciones de tipo práctico de recuento y medición. Los griegos realizaron un planteamiento mucho más abstracto. Creyeron que una forma en particular tiene ciertas propiedades constantes innatas, que son independientes de su tamaño. Así, un triángulo rectángulo de 45° -que tiene dos lados iguales- puede extenderse hasta la Luna o puede caber en la cabeza de un alfiler, pero en cualquiera de los casos continúa siendo un triángulo rectángulo de 45° (isósceles).
El primero de los griegos en aferrarse a esta posibilidad fundamental para la abstracción en geometría -y vislumbrar el sueño griego según el cual el conocimiento se erigiría en sólidas pirámides invertidas de demostraciones a partir de unos cuantos axiomas elementales- fue probablemente Tales de Mileto, un magnate de la industria del aceite de oliva que operaba a lo largo de las costas del Asia Menor entre los años 600 al 550 a. de c. En sus viajes tomó contacto con el conocimiento de las viejas matemáticas y de la astronomía, y cuando por fin se retiró se dedicó a ellas como diversión. Las cinco proposiciones que se cree que demostró, eran tan simples como para indicar que estaba tratando conscientemente de establecer los fundamentos de la geometría en términos básicos inamovibles.
La ambición de Tales no se habría colmado de no haber sido por otro griego quien, según se cree, estudió con él: Pitágoras, un hombre de una personalidad magnética y poderosa. La leyenda dice que a sugerencia de Tales, Pitágoras pasó años viajando, tratando de aumentar sus conocimientos matemáticos. Entre las fuentes que se dice buscó se hallaban los sacerdotes de Zoroastro, quienes pasaron a custodiar el conocimiento matemático bajo el imperio persa. Después, una vez hubo aprendido todo cuanto pudo, Pitágoras, alrededor del año 540 a. de c., fundó una secta semirreligiosa, semimatemática, en Crotona, ciudad griega situada en el empeine de la bota de Italia. Junto con las matemáticas, inculcó a sus discípulos la veneración a los números; a creer en la reencarnación y la transmisión de las almas de hombre a hombre y del hombre a la bestia; a no comer nunca judías; a permanecer siempre anónimos, y a escribir el nombre de la hermandad pitagórica en todo escrito o descubrimiento.
Entre las enseñanzas de Pitágoras que más se recuerdan están, naturalmente; el teorema que dice que en un triángulo rectángulo, el área del cuadrado construido sobre el lado más largo -la hipotenusa- es igual a la suma de las áreas de los cuadrados construidos sobre los otros dos lados más cortos. Los babilonios habían descubierto este teorema con mil años de anterioridad, pero se le atribuye a la escuela pitagórica el ser la primera en demostrarlo. Sigue siendo enormemente útil para la ciencia. Y es de interés vital para muchos de nosotros; por ejemplo, los carpinteros lo usan para estar seguros de que las habitaciones que pavimentan son rectángulos perfectos.

4. Legado para un pianista de jazz
Pitágoras hizo una segunda contribución altamente práctica, que figura en toda ejecución de un pianista de jazz o de un cuarteto de cuerda. Se trata de su descubrimiento de las matemáticas que subyacen en la escala musical. Pitágoras averiguó que existía una maravillosa conexión entre la armonía musical y los números enteros con los que contamos: 1, 2, 3, 4, 5, etc. Pulse una cuerda y haga sonar una nota, después pulse una cuerda igual de tensa y doble de larga que la anterior y se oirá una nueva nota, justamente una octava armónica por debajo de la primera. Empezando por cualquier cuerda y considerando la nota que produce, se puede bajar la escala aumentando la longitud de la cuerda según simples fracciones que pueden expresarse mediante las relaciones de los números enteros. Por ejemplo, 16/15 de una cuerda que da el Do dan la nota baja siguiente Si; 6/5 de ésta dan La; 4/3 de ésta, Sol; 3/2 de ésta, Fa; 8/5 de ésta, Mi; 16/9 de ésta, Re, y exactamente dos de ésta vuelven a dar el Do de octava más baja. 
Pitágoras descubrió las relaciones entre los números enteros, entre Do, Fa, Sol y el Do inferior y entre sus equivalentes en cualquier escala. Llegó a la convicción de que la armonía, la belleza, la naturaleza, pueden expresarse por medio de relaciones entre números enteros. Incluso creyó que los planetas, al girar sobre sus órbitas, deben producir una armonía celeste basada en los números enteros: la denomina «música de las esferas».

Los pitagóricos quedaron tan prendados del incomparable poder de los números enteros, tanta certeza tenían de que todo el universo estaba construido a base de estos números enteros, que llegaron a clasificarlos en categorías tales como «perfectos» y «amigables». También denominaron femeninos a los pares y masculinos a los impares, a excepción únicamente del número uno, que lo consideraron como el generador de todos los números. (El símbolo para el matrimonio era el número 5, suma del primer número femenino, el 2, y el primer número masculino, el 3.) Después, en el despertar de esta bonita fantasía, tuvo lugar un soberano descubrimiento tan poco pitagórico que la hermandad trató de suprimirlo. 
Matemáticas David Bergamini Colección cientifica de Time-Life

No hay comentarios: