jueves, 2 de enero de 2014

¿Es Dios un Matemático? Mario Livio 2009 Capitulo II Místicos: el numerólogo y el filósofo (I )Pitagoras

El deseo de entender el cosmos ha sido siempre un impulso humano. Los esfuerzos del hombre por llegar al fondo de la pregunta «¿qué significa todo esto?» han superado con creces los dedicados a la mera supervivencia, a la mejora de la situación económica o de la calidad de vida. Eso no significa que todos hayan participado de forma activa en la búsqueda de algún tipo de orden natural o metafísico. Las personas que tienen que luchar por llegar a fin de mes apenas pueden permitirse el lujo de ponerse a reflexionar acerca del sentido de la vida. En la galería de cazadores de patrones subyacentes a la complejidad que se percibe en el universo, varios de ellos destacan sobre los demás.
Para muchos, el nombre del matemático, científico y filósofo francés René Descartes (1596-1650) es sinónimo del nacimiento de la «era moderna» de la filosofía de la ciencia. Descartes fue uno de los principales arquitectos[19] del cambio de una descripción del mundo natural en términos de las propiedades percibidas directamente a través de los sentidos a una explicación expresada mediante cantidades matemáticamente definidas. En lugar de sentimientos, olores, colores y sensaciones vagas, Descartes quería que las explicaciones científicas descendiesen hasta el nivel fundamental y utilizasen el lenguaje de la matemática:
No reconozco sustancia alguna en las entidades corpóreas salvo lo que los geómetras llaman cantidad y convierten en el objeto de sus demostraciones … Y, siendo que todos los fenómenos naturales pueden explicarse de este modo, sostengo que ningún otro principio es admisible o siquiera deseable en física.[20]

Es interesante ver cómo Descartes excluía de su elevada visión científica los reinos del «pensamiento y la mente», que consideraba independientes del mundo de la materia, susceptible de ser explicado mediante la matemática. Aunque no cabe duda alguna de que Descartes fue uno de los pensadores más influyentes de los últimos siglos (y volveré a referirme a él en el capítulo 4), no fue el primero en elevar la matemática a una posición central. Aunque parezca increíble, ideas radicales de un cosmos impregnado y gobernado por la matemática —ideas que, en cierto modo, iban más allá del propio Descartes— vieron la luz por vez primera, aunque teñidas de un cierto tono místico, hacía más de dos milenios. La persona a la que, según la leyenda, se le atribuye la percepción de que el alma humana es «como la música» si se la mira desde el punto de vista de la matemática pura, es el enigmático Pitágoras.

Pitágoras

 Pitágoras (ca. 572-497 a.C.) fue quizá la primera persona que fue a la vez un influyente filósofo natural y un carismático filósofo espiritual, es decir, un científico y un pensador religioso. De hecho, se le atribuye la introducción de las palabras[21] filosofía, que significa amor o avidez por el saber, y matemáticas, aquellas disciplinas que se pueden aprender. Aunque no ha sobrevivido ninguno de los escritos del propio Pitágoras (si es que existieron, ya que en la época la mayor parte de las comunicaciones eran orales), sí poseemos tres detalladas, aunque sólo parcialmente fiables, biografías de Pitágoras que datan del siglo III.[22] Una cuarta biografía anónima se conservó en los escritos del patriarca y filósofo bizantino Fotio (ca. 820-891 d.C.). El principal problema al intentar evaluar la contribución personal de Pitágoras es que sus seguidores y discípulos (los pitagóricos) atribuían invariablemente sus propias ideas a él. Así, incluso Aristóteles (384-322 a.C.) tiene problemas para identificar[23] qué partes de la filosofía pitagórica se pueden arrogar al propio Pitágoras, de modo que suele hablar de «los pitagóricos» o a «los así llamados pitagóricos». Sin embargo, a juzgar por la fama de Pitágoras en la tradición posterior, generalmente se supone que fue el inspirador de, como mínimo, algunas de las teorías pitagóricas con las que tan en deuda se sintieron Platón o incluso Copérnico.

No parece haber dudas de que Pitágoras nació a principios del siglo VI a.C. en el isla de Samos, junto a la costa de la actual Turquía. Es posible que en su juventud viajase mucho, en especial a Egipto y puede que a Babilonia, en donde habría recibido una parte de su educación matemática. Finalmente emigró a la colonia griega de Crotona, cerca del extremo sur de Italia, en donde rápidamente se rodeó de un entusiasta grupo de jóvenes estudiantes y seguidores.
El historiador griego Herodoto[24] (ca. 485-425 a.C.) hablaba de Pitágoras como «el más capaz de los filósofos griegos», a lo que el filósofo y poeta presocrático Empédocles (ca. 492-432 a.C.) agregaba con admiración: «Pero entre ellos había un hombre de prodigiosos conocimientos, dotado de la más profunda capacidad de comprensión y maestro en todo tipo de artes; pues, cuando era su firme voluntad, podía fácilmente discernir cualquier verdad de las vidas de sus diez, no, veinte hombres».[25] Pero no causaba esta impresión a todos. En comentarios que parecen producto de alguna rivalidad personal, el filósofo Heráclito de Éfeso (ca. 535-475 a.C.), aunque reconoce los amplios conocimientos de Pitágoras, agrega con desdén: «La erudición no enseña la sabiduría; si así fuera, sabios serían Hesíodo [un poeta griego que vivió alrededor del año 700 a.C.] y Pitágoras».
Pitágoras y los primeros pitagóricos no eran matemáticos ni científicos en el sentido estricto. Más bien, el núcleo de su doctrina contenía una filosofía metafísica del concepto de número. Para los pitagóricos, los números eran entidades vivas y principios universales imbuidos en todo, desde los cielos a la ética de los hombres. En otras palabras, los números poseían dos aspectos diferentes y complementarios. Por un lado, tenían una existencia física perfectamente tangible; por otro, se trataba de fórmulas abstractas situadas en la base de todo. Por ejemplo, la mónada[26] (el número 1) era tanto un generador de todos los demás números —una entidad tan real como el agua, el aire y el fuego, que formaba parte de la estructura del mundo físico—, como una idea, la unidad metafísica como origen de toda la creación. El historiador de la filosofía inglés Thomas Stanley (1625-1678) describió con gran belleza (y en inglés del siglo XVII) los dos significados que los pitagóricos asociaban a los números:
El número es de dos clases: la Intelectual (o inmaterial) y la Ciencial. La Intelectual es esa sustancia eterna de Número, que Pitágoras, en su Discurso acerca de los Dioses, afirmaba que era el principio más providencial de los Cielos y de la Tierra, y la naturaleza que los hace uno … Esto es lo que se denomina el principio, la fuente, la raíz de todas las cosas … El Número Ciencial es el que Pitágoras define como la extensión y producción en acto de las razones seminales que se encuentran en la Mónada o en un grupo de Mónadas.[27]
Así, los números no eran simples herramientas para denotar cantidades: los números debían ser descubiertos, y eran los agentes formativos que actuaban en la naturaleza. Todo el universo, desde los objetos materiales como la Tierra a los conceptos abstractos como la justicia, era número de extremo a extremo.
Que alguien quedase fascinado por los números[28] no es quizá sorprendente de por sí. Después de todo, incluso los números más simples, los que aparecen en la vida cotidiana, tienen propiedades interesantes. Por ejemplo, los días del año: 365. Es fácil comprobar que 365 es la suma de tres cuadrados consecutivos: 365 = 102 + 112 + 122. Pero no acaba ahí: 365 es también igual a la suma de los dos cuadrados siguientes (365 = 132 + 142). O fijémonos en los días del mes lunar: 28. Este número es la suma de todos sus divisores (los números que pueden dividirlo sin dejar resto): 28 = 1 + 2 + 4 + 7 + 14. Los números que cumplen esta propiedad en especial se denominan números perfectos (los cuatro primeros números perfectos son 6, 28, 496, 8.218). Observe que 28 es también la suma de los cubos de los dos primeros números impares: 28 = 13 + 33. Incluso un número tan vulgar como 100 posee sus propias peculiaridades: 100 = 13 + 23 + 33 + 43.
Muy bien, así que los números pueden ser fascinantes. De todos modos, uno se pregunta cuál puede ser el origen de la doctrina pitagórica de los números. ¿Cómo surgió la idea, no sólo de que los números estaban presentes en todas las cosas, sino de que todas las cosas eran números? Pitágoras no dejó nada escrito, o sus escritos fueron destruidos, así que no se trata de una pregunta de fácil respuesta. La impresión que ha sobrevivido sobre los razonamientos de Pitágoras se basa en unos pocos fragmentos preplatónicos y en comentarios muy posteriores y de menor fiabilidad efectuados por filósofos platónicos y aristotélicos. La imagen que se obtiene al unir este mosaico de pistas sugiere que la obsesión de los pitagóricos por los números puede deberse a su preocupación por dos actividades aparentemente aisladas: los experimentos con música y la observación de los cielos.
Para comprender cómo se materializó esta misteriosa conexión entre los números, los cielos y la música, debemos empezar por la interesante observación de que los pitagóricos poseían una forma de representarlos números mediante guijarros o puntos, Por ejemplo, los números naturales 1, 2, 3, 4, … los representaban con guijarros ordenados en forma triangular (como se muestra en la figura 1).
Concretamente, al triángulo que se forma con los cuatro primeros números enteros (un triángulo de diez guijarros) lo denominaron tetraktys (que significa «Cuaternario» o «con la cualidad de cuatro»), y para los pitagóricos simbolizaba la perfección y los elementos que la componen, según está documentado en una historia de Pitágoras escrita por el autor satírico griego Luciano (120-180 d.C.) Pitágoras pide a una persona que cuente.[29] Mientras lo hace, «1, 2, 3, 4», Pitágoras lo interrumpe: «¿Lo ves? Lo que para ti es 4 es en realidad 10, y nuestro juramento». El filósofo neoplatónico Jámblico (ca. 250-325 d.C.) revela que el juramento pitagórico era, efectivamente:
Juro por aquel que transmitió a nuestra alma la Tetraktys en la cual se encuentran la fuente y la raíz de la eterna Naturaleza.[30]
¿Por qué esa veneración por la Tetraktys? Porque, a los ojos de los pitagóricos del siglo VI a.C, parecía esbozar la naturaleza del universo entero. En geometría, la disciplina que impulsó la revolución del pensamiento en Grecia, el número uno representaba un punto, dos representaba una línea, tres representaba una superficie [triángulo], y cuatro representaba una figura tetraédrica tridimensional [tetraedro]. Así, el Tetraktys parecía englobar todas las dimensiones percibidas del espacio.
Pero eso no fue más que el principio. El Tetraktys aparecía de forma inesperada incluso en el enfoque científico de la música. Se suele atribuir a Pitágoras y los pitagóricos el descubrimiento de que, al dividir una cuerda según los enteros consecutivos se producen intervalos armónicos y consonantes, lo cual se puede ver en la interpretación de cualquier cuarteto de cuerda. Cuando se pulsan dos cuerdas similares al mismo tiempo,[31] el sonido resultante es agradable si la proporción entre las cuerdas es simple. Por ejemplo, las cuerdas de igual longitud (relación 1:1) producen el unísono; una relación 1:2 produce la octava; 2:3 genera la quinta perfecta; y 3:4, la cuarta perfecta. Así vemos que, además de los atributos espaciales que lo abarcan todo, el Tetraktys podía representar también las proporciones matemáticas subyacentes a la armonía de la escala musical. Para los pitagóricos, esta unión aparentemente mágica de espacio y música suponía un poderoso símbolo, y les ofrecía una sensación de harmonía («correspondencia exacta») del Kosmos («el bello orden de las cosas»).
¿Y cuál es el papel de los cielos en todo esto? Pitágoras y los pitagóricos desempeñaron en la historia de la astronomía un papel que, aún sin ser esencial, no era nada desdeñable. Fueron de los primeros en sostener que la forma de la Tierra era una esfera (probablemente a causa de su percepción de la esfera como superior desde un punto de vista estético y matemático). Probablemente fueron también los primeros en afirmar que los planetas, el Sol y la Luna se mueven por sí solos de forma independiente de oeste a este, en dirección opuesta a la rotación (aparente) diaria de la esfera de estrellas fijas. Estos entusiastas observadores del cielo nocturno no podían ignorar las propiedades más evidentes de las constelaciones: la forma y el número. Cada constelación se caracteriza por el número de estrellas que la componen y por la figura geométrica que estas estrellas forman. Pero estas dos características eran, precisamente, los ingredientes esenciales de la doctrina pitagórica de los números, como se manifiesta en la Tetraktys. Los pitagóricos quedaron tan cautivados por estas relaciones entre figuras geométricas, constelaciones y armonías musicales con los números, que éstos se convirtieron para ellos tanto en los ladrillos con los que estaba construido el universo como en los principios en los que se basaba su propia existencia. No es sorprendente que la categórica máxima de Pitágoras fuese: «El número es la esencia de todas las cosas». (La cursiva es mía).
En dos de las observaciones de Aristóteles podemos hallar hasta qué punto los pitagóricos se tomaban en serio esta máxima. En su tratado Metafísica hallamos: «… los llamados Pitagóricos se dedicaron por de pronto a las matemáticas, e hicieron progresaresta ciencia. Embebidos en este estudio, creyeron que los principios de las matemáticas eran los principios de todos los seres». En otro pasaje, Aristóteles describe de forma muy gráfica la veneración a los números y el papel preponderante de la Tetraktys: «… conforme al orden inventado por Eurito [un discípulo del pitagórico Filolao], cada número es la causa de alguna cosa, éste, por ejemplo, del hombre, aquél del caballo, porque se puede, siguiendo el mismo procedimiento que los que reducen los números a figuras, al triángulo, al cuadrilátero, representar las formas de las plantas por las operaciones del cálculo». La frase «los que reducen los números a figuras, al triángulo, al cuadrilátero» alude tanto a la Tetraktys como a otro fascinante constructo pitagórico: el gnomon.
La palabra gnomon («indicador»)[32] surge del nombre de un dispositivo astronómico similar a un reloj de sol, utilizado en Babilonia para medir el tiempo. Este aparato lo introdujo en Grecia el maestro de Pitágoras, el filósofo natural Anaximandro (ca. 611-547 a.C.). No hay duda de que el tutor había transmitido al discípulo sus ideas acerca de la geometría y su aplicación a la cosmología, el estudio del universo en su conjunto. Más adelante, el término gnomon se utilizó para denominar un instrumento para dibujar ángulos rectos, similar a una escuadra de carpintero, o para la figura en ángulo recto que, sumada a un cuadrado, forma un cuadrado mayor (figura 2).

Obsérvese que, al añadir siete guijarros dispuestos en forma de ángulo recto (un gnomon) a un triángulo de 3 × 3 se obtiene un cuadrado compuesto por dieciséis (4 × 4) guijarros. Se trata de la representación figurativa de la propiedad siguiente: en la secuencia de números enteros impares 1, 3, 5, 7, 9, … la suma de cualquier cantidad de números sucesivos (empezando por el 1) da siempre como resultado un número cuadrado. Por ejemplo: 1 = 12; 1 + 3 = 4 = 22; 1 + 3 + 5 = 9 = 32; 1 + 3 + 5 + 7 = 16 = 42; 1 + 3 + 5 + 7 + 9 = 25 = 52, etc. Para los pitagóricos, esta relación íntima entre el gnomon y el cuadrado al que «abraza» constituía un símbolo del saber, en donde el cognosciente «abraza» lo conocido. Los números no se limitaban, pues, a ser una descripción del mundo físico, sino que se suponía que eran asimismo la raíz de los procesos mentales y emocionales.
El número cuadrado asociado con los gnomons podría haber sido también el precursor del famoso Teorema de Pitágoras. Esta célebre afirmación matemática establece que, en cualquier triángulo rectángulo (figura 3) el área de un cuadrado formado a partir de la hipotenusa es igual a la suma de las áreas de los cuadrados formados a partir de los otros dos lados.
 .
Como se muestra en el gnomon de la figura 2, al agregar un número de gnomon cuadrado (9 = 32) a un cuadrado de 4 × 4 se forma, efectivamente, un nuevo cuadrado de 5 × 5: 32 + 42 = 52. Los números 3, 4, 5 pueden entonces representar las longitudes de los lados de un triángulo rectángulo. Los números enteros que tienen esta propiedad (por ejemplo, 5, 12 y 13, ya que 52 + 122 = 132) se denominan «tripletes pitagóricos».

Son muy escasos los teoremas matemáticos que disfrutan de un «reconocimiento por nombre» similar al del teorema de Pitágoras. En 1971, cuando la República de Nicaragua seleccionó las «diez ecuaciones matemáticas que alteraron la faz de la tierra» como tema para una serie de sellos, el teorema de Pitágoras aparecía en el segundo sello (figura 5; en el primer sello se mostraba «1 + 1 = 2»).

¿Fue realmente Pitágoras la primera persona en formular el conocido teorema que se le atribuye? Algunos de los primeros historiadores de Grecia así lo pensaban sin duda. En un comentario a los Elementos, el voluminoso tratado de geometría y teoría de números que escribió Euclides (ca. 325-265 a.C.), el filósofo griego Proclo (411-485 d.C.) escribió: «Si escuchamos a los que relatan la historia antigua, hallaremos algunos que atribuyen este teorema a Pitágoras, y dicen que sacrificó un buey en honor a su descubrimiento».[33] Sin embargo, los tripletes pitagóricos pueden hallarse ya ni la tableta cuneiforme babilónica denominada «Plimton 322», que se remonta aproximadamente a los tiempos de la dinastía de Hammurabi (ca. 1900-1600 a.C.) Es más, en India se hallaron construcciones geométricas basadas en el teorema de Pitágoras relacionadas con la elaboración de altares. No hay duda de que estas construcciones eran conocidas[34] para el autor del Satapatha Brahmana (el comentario sobre las antiguas escrituras hindúes), que fue probablemente escrito varios siglos antes de Pitágoras. Sin embargo, sea o no Pitágoras el creador del teorema, no hay duda de que las repetidas conexiones halladas que tejían entre sí los números, las formas y el propio universo acercaron a los pitagóricos un paso más a una detallada metafísica del orden.

Otra de las ideas capitales en el mundo pitagórico era la de los opuestos cósmicos. Los opuestos constituían el principio en el que se basaba la antigua tradición jónica, de modo que fue algo natural su adopción por parte de los pitagóricos y su obsesión por el orden. De hecho, Aristóteles habla de un médico llamado Alcmeon, que vivió en Crotona en la misma época en que los pitagóricos tenían allí su famosa «escuela», que suscribía la idea de que todo está equilibrado «por parejas». La principal pareja de opuestos consistía en el límite, representado por los números impares, y lo ilimitado, representado por los pares. El límite era la fuerza que introducía orden y armonía en el desenfreno de lo «ilimitado». La noción era que tanto la complejidad del universo en su conjunto como la intrincada vida humana, en el nivel microcósmico, estaban formadas y reguladas por una serie de opuestos que, en cierto modo, «se correspondían» entre sí. Esta visión bastante bicolor del mundo se resumía en una «Tabla de opuestos», que se conservó en la Metafísica de Aristóteles:
  Tabla de opuestos Límite Ilimitado Par Impar Unidad Pluralidad Derecha Izquierda Masculino Femenino Reposo Movimiento Recto Curvo Luz Oscuridad Bueno Malo Cuadrado Oblongo
La filosofía básica que expresa esta tabla de opuestos[35] no se limitaba a la antigua Grecia. El yin y el yang chinos, en donde el yin representa negatividad y oscuridad y el yang representa el principio de la luz, ofrecen la misma imagen. Sentimientos parecidos a éstos pasaron a la cristiandad, mediante los conceptos de cielo e infierno (e incluso a declaraciones del presidente de Estados Unidos: «Estás con nosotros o con los terroristas»). De un modo más general, el sentido de la vida siempre ha estado iluminado por la muerte, y la sabiduría sólo es sabiduría en comparación con la ignorancia.
No todas las enseñanzas de los pitagóricos tenían una relación directa con los números. El modo de vida de la cohesionada sociedad pitagórica se basaba en el vegetarianismo, una sólida creencia en la metempsicosis (la inmortalidad y la transmigración de las almas) y una misteriosa prohibición de comer alubias, para la que se han sugerido diversas explicaciones, desde la similitud entre las alubias y los genitales a la comparación entre comer alubias y comerse un alma humana. Esta última interpretación considera que la expulsión de una ventosidad (que suele ser una consecuencia de la ingestión de alubias) es la prueba de la extinción de un hálito. Por eso, en el libro Philosophy for Dummies[36] se resume la doctrina pitagórica con la frase «Todo está hecho de números, y no comas judías o serás el protagonista de un “número”».
La historia más antigua que se conoce acerca de Pitágoras tiene que ver con la reencarnación del alma en otros seres.[37] Este relato cuasipoético se debe al poeta del siglo VI a.C. Jenófanes de Colofón: «Cuéntase que [Pitágoras] pasaba junto a un perro al que estaban golpeando y, apiadándose del animal, habló de este modo: “Deteneos, no lo golpeéis más, pues su alma es la de un amigo; lo sé porque lo he oído hablar”».
Las inconfundibles huellas de Pitágoras se hacen patentes no sólo en las enseñanzas de los filósofos griegos que le sucedieron, sino que se extienden a los programas de las universidades medievales. Las siete asignaturas que se enseñaban en estas universidades se dividían en el trivium, que incluía dialéctica, gramática y retórica, y el quadrivium, con los temas favoritos de los pitagóricos: geometría, aritmética, astronomía y música. La celestial «armonía de las esferas» —la música supuestamente interpretada por los planetas en sus órbitas que, según sus discípulos, sólo Pitágoras era capaz de oír— ha servido de inspiración tanto a poetas como a científicos. El famoso astrónomo Johannes Kepler (1571-1630), que descubrió las leyes del movimiento planetario, eligió para una de sus obras esenciales el título Harmonice Mundi En el espíritu pitagórico, Kepler creó incluso pequeñas composiciones musicales para los distintos planetas.
Desde la perspectiva de las cuestiones en las que se centra este libro,[38] después de despojar a la filosofía pitagórica de sus ropajes místicos, el esqueleto que queda sigue siendo un potente testimonio acerca de la matemática, su naturaleza y su relación tanto con el mundo físico como con la mente humana. Pitágoras y los pitagóricos fueron los precursores de la búsqueda del orden cósmico. Se les puede considerar los padres de la matemática pura ya que, a diferencia de sus predecesores, los babilonios y los egipcios, se dedicaron a la matemática en abstracto, fuera de cualquier finalidad práctica. La cuestión de si los pitagóricos dejaron también establecida la función de la matemática como herramienta de la ciencia es más peliaguda. Aunque es cierto que los pitagóricos asociaron todos los fenómenos con números, su objeto de estudio eran los números en sí, no los fenómenos ni sus causas. Este no era un enfoque especialmente fructífero desde el punto de vista de la investigación científica. Sin embargo, en la doctrina pitagórica era fundamental la creencia implícita de la existencia de leyes generales en la naturaleza. Esta creencia, que se ha convertido en la columna vertebral de la ciencia moderna, podría tener sus orígenes en el concepto de Destino de la tragedia griega. Hasta el Renacimiento, esta osada fe en la realidad de un conjunto de leyes capaces de explicar todos los fenómenos iba mucho más allá de las pruebas concretas, y únicamente Galileo, Descartes y Newton la convirtieron en una afirmación defendible desde una perspectiva inductiva.
Otra de las contribuciones esenciales que se atribuye a los pitagóricos fue el descubrimiento aleccionador de que su propia «religión numérica» era, lamentablemente, del todo inviable. Los números enteros 1, 2, 3…, no bastan ni siquiera para construir la matemática, y mucho menos para una descripción del universo. Examinemos el cuadrado de la figura 6, en el que la longitud del lado es una unidad, y llamemos d a la longitud de la diagonal.
Es fácil hallar esta longitud si utilizamos el teorema de Pitágoras en cualquiera de los dos triángulos en los que está dividido el cuadrado. Según el teorema, el cuadrado de la diagonal (la hipotenusa) es igual a la suma de los cuadrados de los dos lados más cortos (los catetos): d2 = l2 + l2, es decir, d2 = 2. Si se conoce el cuadrado de un número positivo, se puede hallar el número extrayendo la raíz cuadrada (es decir, si x2 = 9, entonces x = √9 = 3). Por tanto, d2 = 2 implica d = √2 unidades. De modo que la relación entre la longitud de la diagonal y la del lado del cuadrado es el número √2. Pero ahora viene la verdadera sorpresa, el descubrimiento que derrumbó la meticulosa construcción filosófica de números enteros de los pitagóricos. Uno de ellos (posiblemente Hipaso de Metaponto, que vivió en la primera mitad del siglo V a.C.) fue capaz de demostrar que la raíz cuadrada de dos no se puede expresar como relación de ninguna pareja de números enteros.[39] En otras palabras, aunque existe una infinidad de números enteros entre los que elegir, la búsqueda de dos de ellos cuya relación mutua sea √2 está condenada al fracaso. Los números que sí pueden expresarse como razón de dos números enteros (por ejemplo, 3/17, 2/5, 1/10, 6/1) se denominan números racionales. Los pitagóricos probaron que √2 no es un número racional. De hecho, poco después del descubrimiento original, se descubrió que tampoco lo eran √3, √17 o la raíz cuadrada de ningún número que no fuese un cuadrado perfecto (como 16 o 25).
Las consecuencias fueron espectaculares: los pitagóricos mostraron que era necesario agregar a la infinidad de los números racionales una infinidad de números de un nuevo tipo, que hoy denominamos números irracionales. La importancia de este descubrimiento para el desarrollo subsiguiente del análisis matemático es fundamental. Entre otras cosas, fue el primer paso hacia el reconocimiento de la existencia de infinitos «contables» e «incontables» en el siglo XIX.[40] No obstante, los pitagóricos quedaron abrumados por esta crisis filosófica, hasta el punto de que el filósofo Jámblico declaró[41] que el hombre que descubrió los números irracionales y reveló su naturaleza a «aquellos indignos de compartir la teoría» fue «tan odiado que no sólo fue expulsado de la comunidad y modo de vida [de los pitagóricos], sino que incluso se construyó una tumba para él, como si su antiguo compañero hubiese abandonado la vida de los hombres».
Quizá aún más importante que el descubrimiento de los números irracionales fuese la pionera insistencia de los pitagóricos en la demostración matemática, un procedimiento basado por completo en el razonamiento lógico mediante el cual, a partir de algunos postulados iniciales, se podía establecer sin ambigüedad la validez de cualquier proposición matemática. Antes de los griegos, ni siquiera los matemáticos esperaban que nadie tuviese interés alguno en los conflictos mentales que les habían llevado a tal o cual descubrimiento. Era prueba suficiente que una receta matemática funcionase en la práctica (por ejemplo, en la división de parcelas de tierra). Por el contrario, los griegos querían explicar por qué funcionaba. Aunque puede que el concepto de demostración fuese introducido por el filósofo Tales de Mileto (ca. 625-547 a.C.), fueron los pitagóricos los que convirtieron esta práctica en una refinada herramienta para la determinación de verdades matemáticas.
La trascendencia de este avance en lógica fue capital. Las demostraciones de los postulados colocaron a la matemática sobre unos cimientos mucho más sólidos que los de cualquier otra de las disciplinas que ocupaban a los filósofos de la época. Una vez presentada una prueba rigurosa, basada en razonamientos paso a paso que no permiten dejar lagunas, la validez de la declaración matemática asociada era, básicamente, incuestionable. Incluso Arthur Conan Doyle, el creador del detective más famoso del mundo, reconoció la categoría especial de la demostración matemática. En Estudio en escarlata, Sherlock Holmes declara que sus conclusiones son «tan ciertas como las proposiciones de Euclides».
Sobre la cuestión de si la matemática era descubierta o inventada, Pitágoras y los pitagóricos no tenían ninguna duda: la matemática era real, inmutable, omnipresente y más sublime que cualquier noción que fuese el posible producto de la frágil mente humana. Para los pitagóricos, el universo estaba literalmente incrustado en la matemática. De hecho, desde su punto de vista, Dios no era un matemático:[42] ¡la matemática era Dios!
La importancia de la filosofía pitagórica no reside en su valor intrínseco. Al establecer el escenario (y, en cierto modo, el orden de prioridades) de la próxima generación de filósofos, especialmente Platón, los pitagóricos establecieron una posición dominante en el pensamiento occidental.
Continua en 

¿Es Dios un Matemático? Mario Livio 2009 Capitulo II Místicos: el numerólogo y el filósofo (II)Platón

[19] Véase el capítulo 4 para una descripción más detallada de la aportación de Descartes. <<
[20] Descartes 1644. <<
[21] Laercio ca. 250 d.C.; Porfirio ca. 270 d.C.; Jámblico ca. 300 d.C. Véase Hicks 1925, Dillon y Hershbell 1991, Taylor 1986. <<
[22] Jámblico ca. 300 d.C.; comentado en Guthrie 1987. <<
[23] Aristóteles ca. 350 a.C. (Barnes y Lawrence 1984); comentado en Burkert 1972. <<
[24] Herodoto 440 a.C. (Greve 1988)<<
[25] Porfirio ca. 270 d.C. 7. <<
[26] Véase Strohmeier y Westbrook 1999 para un comentario certero de la perspectiva pitagórica. <<
[27] Stanley 1687. <<
[28] Para una fascinante recopilación de propiedades de los números véase Wells 1986. <<
[29] Citado en Heath 1921. <<
[30] Jámblico ca. 300 d.C.; comentado en Guthrie 1987. <<
[31] Strohmeier y Westbrook 1999; Stanley 1687. <<
[32] En Heath 1921 se comenta ampliamente el término y su significado en distintas épocas. El matemático Teón de Esmirna (ca. 70-135 d.C.) utilizaba el término en relación con la expresión figurativa de los números descritos en el texto del libro (Lawlor y Lawlor 1979). <<
[33] Como se puede ver, en sus comentarios Proclo no detalla específicamente su propia opinión sobre si Pitágoras fue el primero en formular el teorema. La historia del buey aparece en los escritos de Laercio, Porfirio y el historiador Plutarco (ca. 46-120 d.C.) Se basa en poemas de Apolodoro. Sin embargo, los versos sólo mencionan «esa famosa proposición» sin mencionar a qué proposición se refiere. Véase también Hicks 1925, Dryden 1992. <<
[34] Renon y Felliozat 1947, Van der Waerden 1983. <<
[35] Esta cosmología se basaba en la idea de que la realidad surge del hecho de que la Forma (que se considera el límite) da forma a la Materia (que se considera indefinida). <<
[36] Morris 1999. <<
[37] Joost-Gaugier 2006. <<
[38] Véase Huffman 1999, Riedweg 2005, Joost-Gaugier 2006 y Huffman 2006 en la Stanford Encyclopedia of Philosophy para obtener información sobre las aportaciones pitagóricas y su influencia. <<
[39] Fritz l945. <<
[40] En este libro no se tratan temas como los números transfinitos ni las obras de Cantor y Dedekind. Aczel 2000, Barrow 2005, Devlin 2000, Rucker 1995 y Wallace 2003 son excelentes referencias para no expertos. <<
[41] Jámblico ca. 300 d.C. (Dillon y Hershbell 1991, Taylor 1986). <<

[42] Véase comentario en Netz 2005. <<

No hay comentarios: